Rigidity of Circle Packings

Ken Stephenson

University of Tennessee

Oded Schramm Memorial, 8/2009
Circle Packing – Background
Definition: A *circle packing* is a configuration P of circles satisfying a specified pattern of tangencies.
Definition: A *circle packing* is a configuration P of circles satisfying a specified pattern of tangencies.

A random Delaunay triangulation K of the sphere.
Circle Packing – Background

Definition: A *circle packing* is a configuration P of circles satisfying a specified pattern of tangencies.

A random Delaunay triangulation K of the sphere

An associated circle packing P
Existence and Uniqueness

Theorem: Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K. Moreover, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K "fills" S. Moreover, the conformal structure is unique and P_K is unique up to its conformal automorphisms.

Upshot: Circle packings endow combinatorial situations with geometry. • Local rigidity • Global flexibility • and this is a particularly familiar geometry — it’s conformal!

Oded’s frequent collaborator, Zheng-Xu He, will say more about this in the next talk.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K.

Moreover, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K "fills" S. Moreover, the conformal structure is unique and P_K is unique up to its conformal automorphisms.

Upshot: Circle packings endow combinatorial situations with geometry.

- Local rigidity
- Global flexibility
- and this is a particularly familiar geometry — it’s conformal!

Oded’s frequent collaborator, Zheng-Xu He, will say more about this in the next talk.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] *Given any triangulation* K *of a topological sphere, there exists a univalent circle packing* P_K *of the Riemann sphere having the combinatorics of* K. *Moreover,* P_K *is unique up to Möbius transformations and inversion.*
Theorem: [KAT, Koebe-Andreev-Thurston] Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K. **Moreover**, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K “fills” S.

Upshot: Circle packings endow combinatorial situations with geometry.

- Local rigidity
- Global flexibility
- and this is a particularly familiar geometry — it’s conformal!

Oded’s frequent collaborator, Zheng-Xu He, will say more about this in the next talk.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K. Moreover, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K “fills” S. Moreover, the conformal structure is unique and P_K is unique up to its conformal automorphisms.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] *Given any triangulation* K *of a topological sphere, there exists a univalent circle packing* P_K *of the Riemann sphere having the combinatorics of* K. **Moreover,** P_K *is unique up to Möbius transformations and inversion.*

Theorem: *Given a triangulation* K *of any oriented topological surface* S, *there exists a conformal structure on* S *and a univalent circle packing* P_K *in its intrinsic metric, so that* P_K *“fills”* S. **Moreover,** *the conformal structure is unique and* P_K *is unique up to its conformal automorphisms.*

Upshot: Circle packings endow combinatorial situations with geometry.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] *Given any triangulation* K *of a topological sphere, there exists a univalent circle packing* P_K *of the Riemann sphere having the combinatorics of* K. *Moreover, P_K is unique up to Möbius transformations and inversion.*

Theorem: *Given a triangulation* K *of any oriented topological surface* S, *there exists a conformal structure on* S *and a univalent circle packing* P_K *in its intrinsic metric, so that* P_K *“fills”* S. *Moreover, the conformal structure is unique and* P_K *is unique up to its conformal automorphisms.*

Upshot: Circle packings endow combinatorial situations with geometry.
- Local rigidity
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] *Given any triangulation* K *of a topological sphere, there exists a univalent circle packing* P_K *of the Riemann sphere having the combinatorics of* K. *Moreover,* P_K *is unique up to Möbius transformations and inversion.*

Theorem: *Given a triangulation* K *of any oriented topological surface* S, *there exists a conformal structure on* S *and a univalent circle packing* P_K *in its intrinsic metric, so that* P_K *“fills”* S. *Moreover,* the conformal structure is unique and P_K is unique up to its conformal automorphisms.

Upshot: Circle packings endow combinatorial situations with geometry.
- Local rigidity
- Global flexibility

Oded's frequent collaborator, Zheng-Xu He, will say more about this in the next talk.
Existence and Uniqueness

Theorem: [KAT, Koebe-Andreev-Thurston] Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K. Moreover, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K “fills” S. Moreover, the conformal structure is unique and P_K is unique up to its conformal automorphisms.

Upshot: Circle packings endow combinatorial situations with geometry.
- Local rigidity
- Global flexibility
- and this is a particularly familiar geometry — it’s conformal!

Oded’s frequent collaborator, Zheng-Xu He, will say more about this in the next talk.

Ken Stephenson (UTK)
Circle Packing
Oded Schramm Memorial, 8/2009
Theorem: [KAT, Koebe-Andreev-Thurston] Given any triangulation K of a topological sphere, there exists a univalent circle packing P_K of the Riemann sphere having the combinatorics of K. Moreover, P_K is unique up to Möbius transformations and inversion.

Theorem: Given a triangulation K of any oriented topological surface S, there exists a conformal structure on S and a univalent circle packing P_K in its intrinsic metric, so that P_K “fills” S. Moreover, the conformal structure is unique and P_K is unique up to its conformal automorphisms.

Upshot: Circle packings endow combinatorial situations with geometry.
- Local rigidity
- Global flexibility
- and this is a particularly familiar geometry — it’s conformal!

Oded’s frequent collaborator, Zheng-Xu He, will say more about this in the next talk.
Thurston’s Conjecture, 1985

Conjecture: Under refinement, the discrete conformal maps \(f : P \rightarrow K \) converge uniformly on compacta to the classical conformal map \(F : D \rightarrow \Omega \).

Rodin and Sullivan proved the conjecture, which has been vastly extended—under refinement, objects in the discrete world of circle packing invariably converge to their classical counterparts.
Thurston’s Conjecture, 1985

Conjecture:
Under refinement, the discrete conformal maps $f: \mathbb{P} \to \mathbb{P}$ converge uniformly on compacta to the classical conformal map $F: \mathbb{D} \to \Omega$.

Rodin and Sullivan proved the conjecture, which has been vastly extended—under refinement, objects in the discrete world of circle packing invariably converge to their classical counterparts.
Thurston’s Conjecture, 1985

Conjecture: Under refinement, the discrete conformal maps $f : P_K \longrightarrow P$ converge uniformly on compacta to the classical conformal map $F : \mathbb{D} \longrightarrow \Omega$.

Ken Stephenson (UTK)
Circle Packing
Oded Schramm Memorial, 8/2009
Conjecture: Under refinement, the discrete conformal maps $f : P_K \to P$ converge uniformly on compacta to the classical conformal map $F : \mathbb{D} \to \Omega$.

Rodin and Sullivan proved the conjecture, which has been vastly extended.
Conjecture: Under refinement, the discrete conformal maps \(f : P_K \rightarrow P \) converge uniformly on compacta to the classical conformal map \(F : \mathbb{D} \rightarrow \Omega \).

Rodin and Sullivan proved the conjecture, which has been vastly extended — under refinement, objects in the discrete world of circle packing invariably converge to their classical counterparts.
Rigidity

Claim:
If P and P' are two circle packings of the sphere sharing the combinatorics of K, then they are Möbius images of one another.

The crucial tool?
Two circles can intersect in at most two points.
Claim: If P and P' are two circle packings of the sphere sharing the combinatorics of K, then they are Möbius images of one another.
Claim: If P and P' are two circle packings of the sphere sharing the combinatorics of K, then they are Möbius images of one another.
Claim: If P and P' are two circle packings of the sphere sharing the combinatorics of K, then they are Möbius images of one another.

The crucial tool? **Two circles can intersect in at most two points.**
The setup, I
The setup, I
The setup, I
The setup, I

P

P'
The setup, I
The setup, II

Put ∞ in the chosen interstice and project both packings to the plane to get these juxtaposed configurations:
The setup, II

Put ∞ in the chosen interstice and project both packings to the plane to get these juxtaposed configurations:
Put ∞ in the chosen interstice and project both packings to the plane to get these juxtaposed configurations:
The setup, II

Put ∞ in the chosen interstice and project both packings to the plane to get these juxtaposed configurations: Scale P away from a to put the packings in general position:
The “elements” of P and P'
The “elements” of P and P'
The “elements” of P and P'

Elements:

circle elements
The "elements" of P and P'

Elements:
- circle elements
- interslice elements
The “elements” of P and P'

Elements:
- circle elements
- \(\bigcup \) interstice elements

\[= E \]
The “elements” of P and P'

Elements:

circle elements \bigcup interstice elements

$= E$
The “elements” of P and P'

Elements:
- circle elements \(\bigcup \)
- interstice elements

\[= E \]

Likewise for P'

\[E \leftrightarrow E' \]
The “elements” of P and P'

Elements:
circle elements \bigcup interstice elements

$= E$

Likewise for P'

$E \leftrightarrow E'$
Comparison via “Fixed point index”

Definition:
Given simple closed curves γ and σ and an orientation preserving, fixed-point-free homeomorphism $f: \gamma \rightarrow \sigma$, the fixed point index $\eta(f; \gamma)$ is the winding number of $g(z) = f(z) - z$ about γ.

Ken Stephenson (UTK)
Comparison via “Fixed point index”

Definition:
Given simple closed curves γ and σ and an orientation preserving, fixed-point-free homeomorphism $f: \gamma \to \sigma$, the fixed point index $\eta(f; \gamma)$ is the winding number of $g(z) = f(z) - z$ about γ.

Ken Stephenson (UTK)
Circle Packing
Oded Schramm Memorial, 8/2009
24 / 31
Definition: Given simple closed curves γ and σ and an orientation preserving, fixed-point-free homeomorphism $f : \gamma \xrightarrow{fpf} \sigma$, the fixed point index $\eta(f; \gamma)$ is the winding number of $g(z) = f(z) - z$ about γ.
Compatibility

If γ and σ are both circles then for every f: $\gamma \xrightarrow{fpf} \sigma$, $\eta(f; \gamma) \geq 0$.

If $\gamma = \langle a, b, c \rangle$ and $\sigma = \langle a', b', c' \rangle$, then there exists f: $\gamma \xrightarrow{fpf} \sigma$ with $\eta(f; \gamma) \geq 0$.
Compatibility

If γ and σ are both circles then for every f:

$$\gamma \xrightarrow{fp} \sigma,$$

$$\eta(f; \gamma) \geq 0.$$

If $\gamma = \langle a, b, c \rangle$ and $\sigma = \langle a', b', c' \rangle$, then there exists f:

$$\gamma \xrightarrow{fp} \sigma$$

with

$$\eta(f; \gamma) \geq 0.$$
Compatibility

If γ and σ are both circles then for every $f : \gamma \xrightarrow{fpf} \sigma$,

$$\eta(f; \gamma) \geq 0.$$
Compatibility

If γ and σ are both circles then for every $f : \gamma \xrightarrow{\text{fpf}} \sigma$,

$$\eta(f; \gamma) \geq 0.$$
If \(\gamma \) and \(\sigma \) are both circles then for every \(f : \gamma \xrightarrow{\text{ipf}} \sigma \),

\[\eta(f; \gamma) \geq 0. \]

If \(\gamma = \langle a, b, c \rangle \) and \(\sigma = \langle a', b', c' \rangle \), then there exists \(f : \gamma \xrightarrow{\text{ipf}} \sigma \) with

\[\eta(f; \gamma) \geq 0. \]
The Proof

\[\forall \text{ interstice element } e_j \in E \text{ choose } f_j : e_j \xrightarrow{fpf} e_j' \text{ so that } \eta(f_j; e_j) \geq 0. \]

\[\forall \text{ circle element } e_k, \text{ define } f_k : e_k \xrightarrow{fpf} e_k' \text{ to agree with the maps of neighboring interstices.} \]

\[\text{The element maps induce a homeomorphism } F : \Gamma \xrightarrow{fpf} \Sigma \text{ between the outer boundaries of our two configurations.} \]

\[\text{Taking account of cancellations on interior segments, } \eta(F; \Gamma) = \sum_{e_j \in E} \eta(f_j; e_j). \]

\[\text{In particular, } \eta(F; \Gamma) \geq 0. \]
The Proof

• ∀ interstice element $e_j \in E$ choose $f_j : e_j \mapsto e'_j$ so that $\eta(f_j; e_j) \geq 0$.

• ∀ circle element e_k, define $f_k : e_k \mapsto e'_k$ to agree with the maps of neighboring interstices.

• The element maps induce a homeomorphism $F : \Gamma \mapsto \Sigma$ between the outer boundaries of our two configurations.

• Taking account of cancellations on interior segments, $\eta(F; \Gamma) = \sum_{e_j \in E} \eta(f_j; e_j)$.

• In particular, $\eta(F; \Gamma) \geq 0$.

Ken Stephenson (UTK) Circle Packing Oded Schramm Memorial, 8/2009 26 / 31
The Proof

• ∀ interstice element $e_j \in E$ choose $f_j : e_j \xrightarrow{fpf} e'_j$ so that $\eta(f_j; e_j) \geq 0$.

• ∀ circle element e_k, define $f_k : e_k \xrightarrow{fpf} e'_k$ to agree with the maps of neighboring interstices.
The Proof

- ∀ interstice element $e_j \in E$ choose $f_j : e_j \rightarrow e'_j$ so that $\eta(f_j; e_j) \geq 0$.

- ∀ circle element e_k, define $f_k : e_k \rightarrow e'_k$ to agree with the maps of neighboring interstices.
The Proof

• ∀ interstice element $e_j \in E$ choose $f_j : e_j \xrightarrow{fpf} e_j'$ so that $\eta(f_j; e_j) \geq 0$.

• ∀ circle element e_k, define $f_k : e_k \xrightarrow{fpf} e_k'$ to agree with the maps of neighboring interstices.

• The element maps induce a homeomorphism $F : \Gamma \xrightarrow{fpf} \Sigma$ between the outer boundaries of our two configurations.
The Proof

• ∀ interstice element $e_j \in E$ choose $f_j : e_j \xrightarrow{fpf} e_j'$ so that $\eta(f_j; e_j) \geq 0$.

• ∀ circle element e_k, define $f_k : e_k \xrightarrow{fpf} e_k'$ to agree with the maps of neighboring interstices.

• The element maps induce a homeomorphism $F : \Gamma \xrightarrow{fpf} \Sigma$ between the outer boundaries of our two configurations.

• Taking account of cancellations on interior segments,

\[\eta(F; \Gamma) = \sum_{e_j \in E} \eta(f_j; e_j). \]
The Proof

• ∀ interstice element $e_j \in E$ choose $f_j : e_j \rightarrow e'_j$ so that $\eta(f_j; e_j) \geq 0$.

• ∀ circle element e_k, define $f_k : e_k \rightarrow e'_k$ to agree with the maps of neighboring interstices.

• The element maps induce a homeomorphism $F : \Gamma \rightarrow \Sigma$ between the outer boundaries of our two configurations.

• Taking account of cancellations on interior segments,

$$\eta(F; \Gamma) = \sum_{e_j \in E} \eta(f_j; e_j).$$

• In particular,
The Proof

• ∀ interstice element \(e_j \in E \) choose \(f_j : e_j \stackrel{i^pf}{\rightarrow} e'_j \) so that \(\eta(f_j; e_j) \geq 0 \).

• ∀ circle element \(e_k \), define \(f_k : e_k \stackrel{i^pf}{\rightarrow} e'_k \) to agree with the maps of neighboring interstices.

• The element maps induce a homeomorphism \(F : \Gamma \stackrel{i^pf}{\rightarrow} \Sigma \) between the outer boundaries of our two configurations.

• Taking account of cancellations on interior segments,

\[
\eta(F; \Gamma) = \sum_{e_j \in E} \eta(f_j; e_j).
\]

• In particular, \(\eta(F; \Gamma) \geq 0 \)
but ...

\[F : \Gamma \xrightarrow{fpf} \Sigma \text{ and } \eta(F; \Gamma) \geq 0 \]
but ...

$$F : \Gamma \xrightarrow{\text{fpf}} \Sigma$$ and \[\eta(F; \Gamma) \geq 0 \]
but ...

\[F : \Gamma \xrightarrow{fpf} \Sigma \quad \text{and} \quad \eta(F; \Gamma) \geq 0 \]

By observation, \[\eta(F; \Gamma) = -1 \]
The other bookend
The other bookend

Theorem:
The KAT Theorem on circle packings of the sphere implies the Riemann Mapping Theorem for plane domains.
Theorem: [Schramm/He] The KAT Theorem on circle packings of the sphere implies the Riemann Mapping Theorem for plane domains.
Existence

Theorem: Given any Jordan region Ω, there exists a univalent circle packing with heptagonal combinatorics which fills Ω. Moreover, the packing is unique subject to standard normalization.
Theorem: [Schramm/He] Given any Jordan region Ω, there exists a univalent circle packing with heptagonal combinatorics which fills Ω.
Theorem: [Schramm/He] Given any Jordan region Ω, there exists a univalent circle packing with heptagonal combinatorics which fills Ω. Moreover, the packing is unique subject to standard normalization.
Existence

ODED

Schramm

Ω
Thanks

“Packing two-dimensional bodies ...”,
“Existence and uniqueness of packings with specified combinatorics”,
“Rigidity of infinite (circle) packings”,
“How to cage an egg”,
“Conformal uniformization and packings”,
“Circle patterns with the combinatorics of the square grid”,

With Zheng-Xu He:
“Fixed points, Koebe uniformization and circle packings”,
“Rigidity of circle domains whose boundary has σ-finite linear measure”
“Hyperbolic and Parabolic Packings”,
“The inverse Riemann Mapping Theorem for relative circle domains”,
“On the convergence of circle packings to the Riemann map”,
“The C^∞-convergence of hexagonal disk packings to the Riemann map”,

Thanks, Oded
“Packing two-dimensional bodies ...”,
“Existence and uniqueness of packings with specified combinatorics”,
“Rigidity of infinite (circle) packings”,
“How to cage an egg”,
“Conformal uniformization and packings”,
“Circle patterns with the combinatorics of the square grid”,

With Zheng-Xu He:
“Fixed points, Koebe uniformization and circle packings”,
“Rigidity of circle domains whose boundary has σ-finite linear measure”
“Hyperbolic and Parabolic Packings”,
“The inverse Riemann Mapping Theorem for relative circle domains”,
“On the convergence of circle packings to the Riemann map”,
“The C^∞-convergence of hexagonal disk packings to the Riemann map”,

Thanks, Oded